
coercion
Release 1.0

November 02, 2015

Contents

1 Examples 3
1.1 API Reference . 3
1.2 Changelog . 4

i

ii

coercion, Release 1.0

This library provides functions that coerce datastructures into normalized forms. For example, converting an arbitrary
dict into a form that is suitable for passing to json.dumps.

The tornado framework has a function called recursive_unicode in the tornado.escapemodule. It is a very simple
recursive walk of datastructure that switches on type and transforms string values into unicode strings. I use this in
production software regularly and it works like a charm. Or at least it did until my software encountered a deeply
nested dictionary and I received a RuntimeError: maximum recursion depth exceeded error in my
service log. This is one of the exceptions that strikes fear into most engineers when it rears it’s head in production.

That is the primary reason for this library existing. It provides the same simple string encoding function iteratively
instead of recursively. At the same time, the need to coerce values into a normalized string form is something that I’ve
had to do repeatedly so it might as well be plopped into a reusable library.

Contents 1

http://www.tornadoweb.org/
http://www.tornadoweb.org/en/stable/escape.html#tornado.escape.recursive_unicode

coercion, Release 1.0

2 Contents

CHAPTER 1

Examples

The following example shows one of the underlying reasons that this library was created. The commonly used msgpack
implementation for python returns everything as byte strings which is problematic if you want to dump it as JSON
since it will raise a TypeError if dictionary keys are not strings. (This is where recursive_unicode was so handy.)

>>> import json
>>> import coercion
>>> import msgpack
>>> bin_msg = msgpack.packb({u'\u00DCnicode': b'bytes', b'bytes': 'str'})
>>> decoded = msgpack.unpackb(bin_msg)
>>> decoded
{b'bytes': b'str', b'\xc3\x9cnicode': b'bytes'}
>>> json.dumps(decoded)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/Users/daveshawley/opt/lib/python3.5/json/__init__.py", line 230, in dumps
return _default_encoder.encode(obj)

File "/Users/daveshawley/opt/lib/python3.5/json/encoder.py", line 199, in encode
chunks = self.iterencode(o, _one_shot=True)

File "/Users/daveshawley/opt/lib/python3.5/json/encoder.py", line 257, in iterencode
return _iterencode(o, 0)

TypeError: keys must be a string
>>> json.dumps(coercion.normalize_collection(decoded))
'{"bytes": "str", "\\u00dcnicode": "bytes"}'

1.1 API Reference

coercion.__version__ = ‘1.0.0’
str(object=’‘) -> string

Return a nice string representation of the object. If the argument is a string, the return value is the same object.

coercion.version_info = (1, 0, 0)
tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable’s items

If the argument is a tuple, the return value is the same object.

coercion.stringify(obj)
Return the string representation of an object.

Parameters obj – object to get the representation of

Returns unicode string representation of obj or obj unchanged

3

http://www.tornadoweb.org/en/stable/escape.html#tornado.escape.recursive_unicode

coercion, Release 1.0

This function returns a string representation for many of the types from the standard library. It does
not convert numeric or Boolean values to strings – it only converts non-primitive instances such as
datetime.datetime. The following table describes the types that are handled and describes how they
are represented.

Class Behavior
uuid.UUID str(obj)
datetime.datetime obj.strftime(’%Y-%m-%dT%H:%M:%S.%f%z’)
memoryview obj.tobytes().decode(’utf-8’)
bytearray bytes(obj).decode(’utf-8’)
buffer bytes(obj).decode(’utf-8’)
bytes obj.decode(’utf-8’)

Other types are returned unharmed.

coercion.normalize_collection(coll)
Normalize all elements in a collection.

Parameters coll – the collection to normalize. This is required to implement one of
the following protocols: collections.Mapping, collections.Sequence, or
collections.Set.

Returns a new instance of the input class with the keys and values normalized via stringify()

Raises RuntimeError if coll is not a collection

This function transforms the collection by recursively transforming each key and value contained in it. The
action is recursive but the implementation is unrolled and iterative. If you are interested in the algorithm used,
it is described as comments in the code.

1.2 Changelog

1.2.1 1.0.0 (2015-Nov-02)

• Add coercion.stringify()

• Add coercion.normalize_collection()

4 Chapter 1. Examples

http://docs.python.org/3/library/datetime.html#datetime.datetime
http://docs.python.org/3/library/uuid.html#uuid.UUID
http://docs.python.org/3/library/datetime.html#datetime.datetime
http://docs.python.org/3/library/stdtypes.html#memoryview
http://docs.python.org/3/library/functions.html#bytearray
http://docs.python.org/3/library/functions.html#bytes
http://docs.python.org/3/library/exceptions.html#RuntimeError

Index

Symbols
__version__ (in module coercion), 3

N
normalize_collection() (in module coercion), 4

S
stringify() (in module coercion), 3

V
version_info (in module coercion), 3

5

	Examples
	API Reference
	Changelog

